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INJECTION OF AN ATTACHED INVISCID JET AT AN OBLIQUE 

ANGLE TO A MOVING STREAM 

by M a r v i n  E. Goldstein and Wi l l i s  B r a u n  

Lewis Research Center 

SUMMARY 

An analytical solution has been obtained to the problem of a two-dimensional invis- 
cid, incompressible jet injected into a moving s t r eam from an orifice set  at an oblique 
angle to  the s t r eam for the case  where the jet does not separate  from the downstream 
edge of the orifice. 
in the jet and the total p re s su re  in the main s t r eam is not too large. Typical flow pat- 
t e rns  a r e  presented to illustrate the effects of varying both the orifice angle and the total 
p ressure  within the jet. 

The solution is valid when the difference between the total p ressure  

INTRODUCTION 

The flow field resulting f rom the oblique penetration of a jet into a flowing s t r eam is 
of considerable interest in a number of fluid mechanical devices. Among these are 
ground-effects machines, jet flaps, wing fans, and fuel injection systems. 

The dynamics of jet injection into moving s t r eams  is by no means fully understood. 
However, a certain amount of insight into this phenomenon can be gained by considering 
the injection of two-dimensional inviscid jets into flowing s t r eams  since flows of this 
type a r e  simple enough to  be amenable to  mathematical analysis. It is realized that 
viscous effects can be significant in real flows. In order  t o  take viscous effects into ac- 
count, however, it is necessary to first perform an inviscid analysis and then modify the 
flow by superimposing viscous boundary layers. In any event, it is hoped that the invis- 
cid analysis will reveal some of the significant features of the flow and thereby lead to  
an increased understanding of the phenomena involved. The work done along these lines 
to  date is summarized in reference 1. 

solution for the flow field resulting from a two-dimensional inviscid and incompressible 
In reference 1 a technique was developed and applied to  obtain an explicit analytic 



jet issuing from an orifice into a moving s t ream. The orifice was at an oblique angle to  
the s t r eam and it was assumed that the jet separates  f rom the downstream edge of the 
orifice to  form a stagnant wake. Since it is not possible to  tell from the inviscid analy- 
sis whether the jet will separate, remain attached, o r  form a separation bubble, it is 
also of interest t o  consider the flow that would result  if no separation occurred. Hence, 
in this report  the techniques used in reference 1 are used to  obtain a solution for the 
case where the jet does not separate  from the downstream edge of the orifice. The flow 
configuration is shown in figure 1 (p. 5). Since no separation is allowed to occur, it is 
necessary to  allow the velocity to  become infinite at the downstream edge of the orifice. 
This condition is approximately realized in certain real flows. The usual method for 
handling this situation is to  replace the boundary streamline by one which is close to it 
when interpreting the results (ref. 2). In the present case  this corresponds to  replacing 
the infinitely thin plate which forms the downstream edge of the orifice by one of finite 
thickness with a streamlined leading edge. 

compressible. In addition, it will be required that in a certain sense (to be specified 
more precisely) the difference between the total p ressure  in the jet and the total p res -  
s u r e  in the main s t r eam be small. The upstream boundary of the jet is the streamline 
emanating from the upstream edge of the orifice. 

the difference in total p re s su re  between the jet and the mainstream. The zeroth-order 
solution corresponds to equal total pressures .  

Since the boundary shapes for the first-order problem a r e  unknown, a technique 
s imilar  to that employed in thin airfoil theory is used to  t ransform the first-order bound- 
a r y  conditions to the zeroth-order boundary. 
theory of sectionally analytic functions. 

plies to the case where the density of the fluid in the jet differs f rom that in the main- 
s t ream. 

As in reference 1, the flow will be assumed to  be two-dimensional, inviscid, and in- 

The problem is solved by expanding the solutions in a small  parameter related to  

The solution is then obtained by using the 

It is proved in the appendix of reference 1 that the solution obtained herein also ap- 

SYMBOLS 

A 

a A/L 

B 

b '  B/z 

horizontal distance between edges of orifice 

vertical distance between edges of orifice 
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pres su re  coefficient along slip line 
cPS 

D* 

4 
H 

h 

I 

J 

1 

M 

0 

0 

P 

'j 

pa0 

P. v. 
P 

P O  

p, 

Q 
S 

S 
.- 

yQ 
T 

TJ 

U 

flow regions in physical plane 

regions in T-plane 

asymptotic jet width 

H/1 

function defined by eq. (54) 

function defined by eq. (55) 

characteristic length (set equal to Ho) 

function defined by eq. (63) 

order  symbol 

order  symbol 

total p ressure  in main s t r eam 

total p ressure  in jet 

total p ressure  in main s t r eam 

Cauchy principal value 

static pressure  

static pressure  at jet source ( f a r  inside the orifice) 

static pressure  far upstream from jet 

volume flow through jet 

slip line in physical plane 

distance along slip line 

slip line in T-plane 

intermediate variable, T = + iq 

X-component of velocity 

u/v, 
Y - component of velocity 

velocity along slip line inside of jet 

f r ee  s t r eam velocity 

v/v, 
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W 

X 

X 

Y 

Y 

2 

Z S 

r 
Y 

E 

A 

6 

< 
rl 

0 

A 

5 
P 

T 

4, 

\k 

* 

dimensionless complex potential, cp + i$ 

coordinate in physical plane 

x/z 

y/z 

coordinate in physical plane 

dimensionless complex physical coordinate, x + iy 

dimensionless coordinate of points on slip line 

function defined by eq. (49) 

dummy variable to  replace q 

Pj - P, 

1 2  
- PV, 
r) 
L 

location of downstream edge of orifice in T-plane 

defined in fig. 7 

dimensionless complex conjugate velocity, u - iv 

coordinate in T-plane 

function defined by eq. (31) 

defined by eq. (58) 

coordinate in T-plane 

dens it y 

dummy variable in T-plane 

velocity potential 

+/ l  v, 

Q/l v, 
s t r eam function 

Subscripts : 

0 zeroth-order quantity 

1 first-order quantity 

Supers c r  ipt s : 

S 

4 

value of quantity on slip line 



I 

+ 
- 

value of quantity inside jet and orifice 

value of quantity in main s t r eam 

(overbar) complex conjugate 
- 

ANALYSIS 

Fo rmu lat ion and Boundary Conditions 

It will  be assumed that the flow is inviscid, incompressible, and irrotational. The 
The analysis is limited to  the case  in which jet configuration is illustrated in figure 1. 

the difference between the total p ressure  in the jet P 
s t r eam P, is not too large; or  more specifically, to the case in which 

and the total p ressure  in the main 
j 

where 

P j  - P, 
E -  

1 2  
2 
-- PV, 

p is the density of the fluid and V, is the velocity of the main s t r eam at infinity. 

Figure 1. - J e t  penetrating stream. 
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Let Z be a convenient reference length which will  be specified in the course of the 
analysis. The X and Y components of the velocity, U and V, respectively, will be 
made dimensionless by V,; and the s t r eam function \k and the velocity potential 
will be made dimensionless by V,Z. Thus, the dimensionless quantities u, v, Q, and 
(p a r e  defined by 

The dimensionless complex conjugate velocity 5 and the dimensionless complex poten- 
tial W a r e  defined, as usual, by 

< = u - i v  

and 

With all lengths made dimensionless by 2 (Le . ,  x = X / 1 ,  y = Y/Z, a = A / 1 ,  b = B/1, 
and h = H/Z) the flow configuration is shown in the physical plane (with the complex var- 
iable z defined by z = x + iy) in figure 2. 

The s t r eam of fluid issuing from the orifice formed by the two parallel walls HD 
and EH meets the main s t r eam at the point D and forms a commm streamline which 
is denoted by S in figure 2. The jet does not separate  f rom the wall EH at the goint 
E but turns  and flows back along EC. A s  a result of using this model it is necessary 
to  allow the velocity to become infinite at the point E. Points on the common stream- 

s s  s line will be denoted by z = x + iy . 

anywhere within the flow field, it is necessary (as is shown in ref. 1) to allow the veloc- 
ity to be discontinuous across  S. For this reason the streamline S will be called the 

n 

n 

.- 

In order  to satisfy the requirement that there  be no discontinuities in static pressure  
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Figure 2. - Physical plane (z-plane). 

slip line. 
gion of the flow (i. e. , the main s t ream) by D-. Since the velocity (and as a conse- 
quence, the velocity potential) is discontinuous across  S, it is convenient to use a super- 
sc r ip t  + to denote the flow quantities inside the jet (i. e., in D+) and a superscript - 
t o  denote those in the main s t ream.  

The region within the jet and orifice is denoted by D+ and the remaining re- 

Thus, 

and 

w+(z) for z E D+ 

W-(z) for z E D -  

W(z) = 

Then c+ and W+ a r e  holomorphic in the interior of D+ and <- and W- a r e  holo- 
morphic in the interior of D-. 

A repetition of the argument given in reference 1 shows that Bernoulli's equation 
implies that 

I T"(ZS) 
P. - Po3 

= E  - IC-(zS)l2 = J c. 

2 
1 z  
- PV, 
2 

at every point zs of S. Since S is a common streamline to  the internal and external 
flows, it is clear that f l ( z s )  and .%n W-(zs) a r e  both constants. Moreover, the ar- 
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bitrariness in the definition of W can be partially removed by choosing these constm-ts 
t o  be zero (ref. 3). Hence, 

The remaining arbi t rar iness  in W can be removed by choosing 

(4) W+(O) = w-(o) = 0 

The conditions imposed on the velocity at in€inity are (in view of the manner of nondi- 
mens ionalizat ion) 

The remaining boundary conditions are that the normal component of the velocity vanish 
on the solid boundaries. These conditions are sufficient to  completely determine the 
solution. They are summarized below for convenient reference. 

94n y-(z) = 0 ;  z €66 

Asymptotic Expan si0 n s 

J 

For small  values of E the functions ( *  and W* can be expanded in an asymptotic 
power se r i e s  in E .  In view of the fact that the shape of the slip line depends on E ,  

these expansions imply that the coordinates of S, z , and the asymptotic jet width h 
must also be expanded in powers of E. Hence, 

S 
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1 f c = r O + € c l + .  . . 

I W * = w o + E W ; + .  . . 

i s s  S 
0 z = z  + E Z 1 + . . .  

h = h  0 + € h i + .  . . J 
As pointed out in reference 1 the expansion of zs does not imply that the complex 

variable z is being expanded. 
the expansion of 5" are related to  those in the expansion of W* by 

It is also shown in reference 1 that the coefficients in 

1 -  dz 
s . .  

0 . .  7 . L .  

(9) 

The reason for omitting the superscript  + or  - in the zeroth-order t e r m s  of the 
f i r s t  two expansions is that (as will be shown subsequently) the zeroth-order solutions 
a r e  not discontinuous across  the curve S and so  there is a single function Po which is 
holomorphic in the entire flow field (of course, the s a m e  is true for Wo). 

The reference length 2 will now be chosen in such a way that 

ho = 1 

Thus 1 is the zeroth-order asymptotic thickness of the jet. This is denoted symboli- 
cally by putting 

l = H  0 (10) 

9 



The last expansion (eq. (8)) is then 

h = l + E h l + .  . . 

Zeroth-Order Solution 

When the expansions (eq. (8)) a r e  substituted into the boundary conditions (eqs. (4) 
to (7)) and only the zeroth-order t e r m s  are retained, the following boundary conditions 
for  the zeroth-order solution are obtained: First, the first boundary condition (eq. (7)) 
shows, as has already been anticipated, that the zeroth-order solution must be continu- 
ous across  the sl ip line, and, hence, that it is characterized by functions which a r e  
holomorphic everywhere within the flow field. The remaining conditions show that 

1 WO(O) = 0 

94% wo(z;)= 0 ) 

0 for 

z E E C  

The conditions (eq. (12)) merely se rve  to show that because of the manner in which the 
arbi t rary constants have been adjusted in the complex potential the streamline emanating 
f rom the point D is to be taken as the zero streamline. 

Now the change in the s t r eam function across  the jet must be equal to the volume 
flow rate through the jet. 
flow through the jet, and Aqo denotes the zeroth-order change in the s t r eam function 
across  the jet, it is clear f rom the definition of s t r eam function that 

Hence, if Qo denotes the dimensionless zeroth-order volume 

10 
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The last boundary condition (eq. (13)) shows that far downstream in the jet (Le . ,  at the 
point C) the zeroth-order velocity goes to  1. In view of the normalization (eq. (11)) the 
asymptotic thickness of this portion of the jet must also be 1. It follows from these r e -  
marks  that Q, = 1. Hence, 

A$', = 1 (14) 

Now the boundary value problem posed by the boundary conditions (eq. (13)) is a 
simple f ree  streamline problem which can be readily solved by the Helmholtz-Kirchoff 
technique. Tn fact, the solution to this problem has already been car r ied  out by Ehrich 
(ref. 4). His solution, however, is somewhat inconvenient for our purposes. Thus, it 
will be necessary to use  a slightly different approach in order  to obtain a zeroth-order 
solution which is in a convenient form to  use for calculating the higher-order te rms .  
The procedure for obtaining the solution is (ref. 3), of course, t o  draw the region of 
flow in the hodograph plane and in the complex potential plane, and then to find the ap- 
propriate mapping of these two planes into some convenient intermediate plane (say, the 
T-plane). The shapes of these regions can readily be deduced from the boundary condi- 
tions (eq. (13)), and they a r e  shown in figures 3 and 4 (we have put W, = 'p, + iq, in 
fig. 3).  The corresponding points in the various planes are designated by the same let- 
t e r s .  The zeroth-order "slip line" is shown dashed in these figures since it does not 
correspond to a line of discontinuity and can therefore be ignored as far as obtaining the 
zeroth-order solution is concerned. The intermediate T-plane is chosen in such a way 

H -1 C 

Figure 3. - Zeroth-order complex potential plane (Wg-plane). 
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Figure 4. - Zeroth-order hodograph (cO-plane). 
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Figure 5. - Intermediate plane (T-plane). 

that the region of flow maps into the upper half plane in the manner indicated in figure 5. 
We shall denote the real a.nd imaginary par ts  of the variable T by 5 and 7 ,  respec- 
tively. The region of the T-plane into which the zeroth-order flow field interior t o  the 
jet maps is denoted by 9:, and the region of the T-plane into which the zeroth-order 
main s t r eam maps is denoted by -96. 
(which is being called for convenience the zeroth-order sl ip line even though no slip oc- 
durs in the zeroth-order solution) is denoted by Yo. 

Simple applications of the Schwartz-Christoffel and linear fractional transformation 
(ref. 5) show that the mappings which properly transform the Wo-plane and the c0- 
plane into the upper half T-plane in the manner-indicated in the figures are respectively 

The dividing line between these two regions 

12 



defined by 

for n 2 0 d w O - l  ___ T + l  
dT R T 

and 

m 

or, performing the indicated integration, 

1 W - - ( T + l + l n T ) - i  for q 2 0  
O - X  

Since the Wo-plane and the T-plane are essentially the same as those of refer- 
ence 1, the resul ts  obtained therein can be used to  show that the parametric equation for 
the zeroth-order sl ip line .!Po in the T-plane is 

It follows from the first equation (9) that the points in the physical plane (fig. 2) are 
related to the points in the T-plane by 

Substituting equations (15) and (16) into this formula and using the fact, indicated in fig- 
u r e  2, that the origin of the coordinate system in the physical plane is to  be at the point 
D result  in 

1 A = -- T + (1 - A)ln T + - + (1 + A) + ( A  - l ) i  
R '1 T 

(19) 

1 3  



By definition (see figs. 2 and 5) 

z(A) = a + ib 

Hence, equation (19) shows 

1 a + ib = -[(I - A ) h  A + 2(1 + A)] + i ( A  - 1) 
a 

Therefore, on equating real arid imaginary parts,  

I 1 a = -[(I - A ) h  A + 2(1 + A)] 
a 

b z A - 1  

Formulation of First-Order Problem in Physical Plane 

The mapping T -c Z defined by equation (19) maps the upper haif T-plane approxi- 
mately into the region of flow in the physical plane. The domain 9; is mapped into the 
crosshatched region of the physical plane shown in figure 6 .  The curve Yo is mapped 
into the dashed boundary So of this region. This region, of course, differs f rom the 
t rue  interior of the jet whose boundary S is indicated by the solid line (curved) in fig- 
u r e  6 .  

Now the first group of the boundary conditions (eq. (7)) is specified on the curve S 
in the physical plane, whose shape is not known at this stage of the solution. A s  ex- 
plained in reference 1, however, these boundary conditions, correct to  t e r m s  of the 
order E ,  can be t ransferred to So by relating the values of <* and W* at an arbi- 
t r a r y  point zs of S to  their values at some neighboring point zo of So by performing S 

Figure 6. - Comparison a s  zeroth order and t rue  jet boundaries i n  physical plane. 
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a Taylor series expansion of these quantities about z;. Thus, 

5 * s  (z ) = 5 * s  (Zo)+ (e) (A z;)+. . . 
z=zo dz 

w * s  (z ) = w * s  (zo)+ 5 * s  (Zo)(ZS - z;>+ * - * 

As in reference 1 substitution of the asymptotic expansion (eq. (8)) into these Taylor 
series yields, after neglecting t e r m s  of O(E ), 

2 

r 1 

And these expressions relate the values of the dependent variables W* and C* at the 
points of the unknown boundary S to their values on the known boundary So with an 
e r r o r  of order E . An easy calculation carr ied out in reference 1 shows that equa- 
tion (21) implies 

2 

Finally, substituting the expansions (eqs. (22) and (23)) into the f i r s t  group of bound- 
a r y  conditions (eq. (?)) and equating the coefficients of E to  the first power yields the 
following first-order boundary conditions on the slip line: 

9m [W;(z;)+ %o(z;)z;] = 0 

s s  h [w;(z;) + PO(zO)~l] = 0 

I 



Thus, equations (24) t o  (26) are the boundary conditions for the first-order solutions on 
the boundary S l l transferred' l  to the.zeroth-order boundary So. Hence, the first-order 
boundary value problem has been transformed f rom one in which the shape of the bound- 
aries is unknown to  one in which it is known. Notice, however, that these boundary con- 

S ditions involve the variables Wf, <f, and z l .  But, <: is completely determined in 
t e r m s  of Wf by the second equation (9). In view of this the conditions (eqs. (24) to  (26)) 
may be thought of as two boundary conditions connecting the variable <; with the vari- 
able 
equation which determines z s  once 
from (25) yields 

ac ross  So (or equivalently the variable wf with the variable W;) plus an 
are known. Thus, subtracting equation (26) 

Then in view of the second equation (9), equations (24) and (27) are the boundary condi- 
tions on So which connect the solution c; in D+ with the solution r; in D-, and 
equation (25) se rves  to  determine z s  once [; is known (actually zs will be deter- 
mined in a slightly different fashion). It is shown in reference 1 that the boundary condi- 
tion (eq. (27)) can be differentiated to obtain 

Multiplying this by i and adding it to equation (24) yield the following single (complex) 
jump condition on So: 

The boundary conditions for the remaining (solid) boundaries are easily deduced by sub- 
stituting the f i r s t  asymptotic expansion (eq. (8)) into expressions (5) and (6) and the sec- 
ond group of boundary conditions (eq. (7)) and equating the coefficients of E to the first 
power. Thus, 

16 



<;(z) - 0 z - H 

< ; ( z ) - o  z - G  J 

Solut ion of First-Order Boundary-Value Problem 

The boundary conditions (eqs. (28) and (29)) completely determine a boundary-value 
problem (or more precisely, two boundary- value problems connected along the curve 
S ) fo r  a holomorphic function in the region of flow in the physical plane. 
under the change of variable z -. T defined by equation (19) this boundary-value problem 
can be transformed into one in the upper half T-plane (fig. 5). 
in the T-plane are 

However, 0 

The boundary conditions 

Clearly, the domains of definition of <+ and <- are 9; and .9;, respectively. It is 
convenient to  work with the sectionally analytic function 0 defined on the upper half T- 
plane in t e r m s  of c* by 

17 



O(T) = { 

It follows from the boundary conditions (eq. (30)) that 8 must satisfy 

where we have put 

O+(T) - O-(T) = r(T) 

9m o(( + io )  = o 

for T € Y o  

for --oo < 5 < +-oo 

O(T) - 0 for T - -oo 

Since can be no more singular than To, if the asymptotic expansion is to  be uni- 
formly valid it follows that O must be bounded on the real axis. 

The function 0 can now be constructed as follows: An investigation of the behavior 
of r(T) at T = 00 and T = -1 shows that it vanishes at these points like some power of 
T. Hence, the Plemelj  formulas (ref. 6) show that the Cauchy integral 

where the integration is to  be performed along Yo in a counterclockwise direction 
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about 9;) is a sectionally analytic function which is bounded on the real axis, vanishes 
at infinity, and satisfies the jump condition (eq. (30)). However, this function is not 
necessarily real for real values of T. But this can be compensated (as shown in ref. 6) 
by adding the function 

2ni J 7 -  T 

t o  equation (34). 
f defined by f (T)  = fo is also holomorphic there and f(5) +T(5) = f (5)  + fo is real.) 
Thus, the function 0 with the required properties is defined by 

(Notice that, if f is holomorphic in the upper half plane, the function 
- 

In view of the mapping T - z defined by equation (19), this completes the solution of the 
problem since equation (31) determines ct in t e r m s  of the known function 0. It is also 
convenient to  have an expression for W; in t e r m s  of 0. To this end, notice that it fol- 
lows from the first and second of equations (9) that 

* dWf - dWf dT 
c l = T - -  - c o  

dT dWo 

Hence, 

dT dT To 

Using this in equation (31) shows that 

d q d w 0  0 + (T) + - 1 - dWo 
dT d T  2 dT 

19 



Notice that z = 0 when T = -1 and, therefore, equation (4) implies that Wi(T) both 
vanish at T = -1. Hence, integrating equations (36) and (37) between -1 and T yields 

1 d T  + - WO(T) 
2 

f O+(T) - dWO 
dT 

WfU) = 

J- 1 

(39) 
"0 O-(T) - 

Wi(T) = 6' dT 

Let Q denote the dimensionless volume flow through the jet. It follows from the 
2 definition of the s t ream function that to within an e r r o r  of O(E ) 

Or using equation (14) and the fact that $(T) and Wo(T) both vanish at T = -1 this be- 
comes 

Substituting equation (38) into this expression and using equation (14) again shows 
that 

A 
Q =  l + f -  ~ j m j f  O+(T)- dWo dT + O(t2) 

2 dT 

Or substituting in equation (15) this becomes 

J- 1 

20 
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Figure 7. - Path of integration for  1 /" &(TI TA dT in T-plane. T 57 -1 

In view of the singularity in the denominator this integral must first be carr ied out 
over the path shown in figure 7 and then the limit 6 - 0 can be taken. Performing these 
operations yields 

where P. V. denotes the Cauchy principal value. Because of([ + io) is real, equa- 
tion (40) becomes 

Since the flow far downstream in the jet becomes uniform and since l im g - ( z )  = 1, it 
follows from equation (2) (see fig. 2) Z-CcJ 

Therefore, continuity requirements dictate that the dimensionless net volume flow 
through the jet Q be equal to  

Expanding this in powers of E we find with the aid of the expansion (eq. (11)) 
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= l + ~ - + h  + . . .  (: 1) 

Hence, equating like powers of E in equations (41) and (42) shows that 

hl = O+(O) (4 3) 

Since equation (19) set up a one-to-one correspondence between points of the physi- 
cal  plane and points of the T-plane, it is clear that equations (31), (35), (38), and (39) 
can be used to  compute the first-order perturbation to  the velocity and s t r eam function 
at each point of the physical plane. 

the streamline patterns, the most important quantities to be obtained from the analysis 
are the shapes of the curve S in the physical plane (see fig. 2). However, since the 
viscous spreading of the jet is controlled by the pressure (or equivalently, the velocity) 
distribution along the sl ip line S, that quantity is also of some importance. Hence, ex- 
plicit formulas will now be obtained for these quantities by using the formulas previously 
derived. 

In view of the fact that once the shape of the jet is known it is quite easy to  sketch in 

Computation of Boundary Values 

In view of the one-to-one nature of the mapping involved it is clear that, if  
.hW+(z) = 0, then z must be a point on the streamline which passes through the point 
D in figure 2. In addition, since the velocity potential is increasing in the direction 
D - C along S, it is clear  that, if /?e&(z) > /?eW+(O) = 0 (see eq. (4)), then z must 
be a point of the sl ip line S. It is clear that %n Wo(z$ = 0 and /?e Wo(zs) L 0 for any 

S S S point zo E So. In view of these considerations it follows that the point zg= zo + E Z ~  

will be on the first-order position of S if zs satisfies the equation 

w + s  (z ) = w o ( z q l  + s )  
2 

(44) 

S + s  It is clear from this equation that when zo = 0, W (z ) = 0, and that /?e W+(zs) - 00 as 
zo - 03. Hence, the point zs traverses the streamline S as zo t raverses  the zeroth- 
order  slip line So. 

S S 
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By substituting equation (44) into the expansion (eq. (22)), the first-order distance 
z s  from the zeroth-order sl ip line t o  the slip line is found t o  be * 

where the fact has been used that the curve So in the physical plane is the conformal 
image under the mapping T - z defined in equation (19) of the curve Yo in the T- 
plane. This also shows that 

(4 6) 
S 2 zs = Z(T) + EZ1 + o ( E  ) for T E yo 

S In addition, equation (23) shows that the magnitude of the velocity at each point z 
of the sl ip line is given to  within t e r m s  of order c2 by 

Substituting equation (45) into (46) and substituting equation (38) into the resulting ex- 
pression yield 

where the integral can be taken along the curve Y o  if S+(T) is interpreted as the 
limiting value of O(T) as T approaches Y o  from within 9;. 

It follows from the first equation (9) and equations (46), (48), and (31) that 

O+(T) __ dWo dT 
dT dWO 

1 
2 

= - + &(T) - ~ 
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Substituting this into equation (47) shows that 

f 

A 

The distance S measured along the curve S is given by 

where the integral is taken along the curve yo. Now differentiating equation (46) and 
inserting equation (45) yield 

+ - -  
2 

Comparing this with equation (47) shows that 

Substituting this result  into equation (50) shows that 
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All necessary resul ts  have now been obtained. However, it is convenient t o  rewrite 
some of these in more explicit form. 

Explicit Formulas for Calculat ing Boundary Values 

Substituting equation (1 6) into equation (33) yields 

T -  A g * T -  A 
T T 

r(T) = -i- 

Or using equation (17) 

where r(q) is used in place of r[-(q/sin ~ ) e - ~ ~ ] .  Applying the Plenielj formulas 
(ref. 6) to equation (35) shows that 

where the integration is to  be performed in a counterclockwise direction along Yo. 
view of equation (24), however, this can be written as 

In 

where, for brevity, O+(q) is used in place of O+ [ (-q/sin q)e-’q]. Since 
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the foregoing equation can be written as 

For T = 0 equation (35) becomes 

S S Upon defining zo(q)  and co(q) by 

for 0 5"  < n  

sin 77 

and using equations (15), (17), and (53), equation (46) becomes 

(56) 

where 
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and 

for 0 < q  < r  

for 0 I y  < r J(y) = -[(I 1 - y cot y )  2 + y2] 
nY 

Upon defining Vi(q)  by 

for O < _ q < r  + s  
V;(d E v,15 (2 ) I  

and using equations (15), (16), (17), and (53), equation (49) becomes 

where 

Let po be the pressure far inside the orifice (the point H in fig. 2).  
is zero there,  it is clear that po = Pj. 
pressure at the point (xs, ys) on the slip line p(xs, ys) is given by 

Since the velocity 
Hence, it follows from equation (2) that the 

Hence, let the pressure coefficient on the sl ip line C be defined by 
PS 

- - Po - P(XS, Ys) 

1 2  
2 

cps - 
- PV, 



Upon using equations (15), (17), (53), and (60), equation (50) becomes 

For convenience, the most important equations of this section are now summarized. 

SUMMARY OF EQUATIONS 

for ~ " T > _ o  

1 A z(T) = - T + (1 - A ) h  T + - + (1 + A) + i ( A  - 1) 
71 ' I  T 

h = 1 - f hz [' I?(.)(' - cot q - 
71 77 

2 

2 
for 0 < q  < I T  iq s in  q r ( V )  = -iA(q + A sin 77 e ) __ 

?1 

-~ w ) (r ) dv for 0 < q  < 7r (54) 
y cot y - q cot q + i(y + q)  27ri 

where 
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M(q) =_ - (y - cos 71 sin 7 )  + i 
2 sin 17 

\ for o < _ q < r  

1 

ny 
J(y) = - 11 - y cot y ) 2  + 7 2 1  (59) 

where equations (55) and (43) have been substituted into equation (11) to obtain equa- 
tion (66). 
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RESULTS AND DISCUSSION 

The numerical calculations were  performed by using complex arithmetic. Hence, 
there  is no need to  separate  the rea l  and imaginary par t s  of the various formulas given 
in the preceding section, Equations (20) are used to  calculate the orifice offset ratio 
B/A = b/a for various values of the parameter A. However, it is more convenient to 
present the resu l t s  in t e r m s  of the orifice orientation angle defined as tan-'B/A. A 
plot of the orifice angle against the parameter  A is presented in figure 8. 
angle completely fixes the geometry of the problem. Hence, once the geometry of the 
orifice is set ,  the parameter  A can be determined from figure 8. This parameter is 
the one which appears naturally in the formulas which a r e  used to calculate the various 
physical quantities of interest. The only other parameter  appearing in the problem is E 

which gives a measure of the difference between the total p ressure  in the jet and the 
total p ressure  in the mainstream. 

The orifice 

This parameter is defined by equation (1) as 

P j  - Pw 
E =  

1 2  
2 
- PVw 

Equation (52) is used to calculate r(q) for various values of A and these values of 
r(q) are used together with equation (67) to calculate @+(e) and h for various values of 

-3 k .1 
I I 1 1 1 1 1 1  1 I I I l l l l l l  10 I I I 1 1 1 1 1 1  100 

.01 
T-plane parameter, A 

Figure 8. - Dependence of or i f ice angle o n  parameter A. 
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A from equations (54) and (66), respectively. All the physical quantities presented in 
the plots are determined by these latter two quantities. 

jet thickness divided by the length of the orifice. 
Now for two-dimensional jets, the jet contraction ratio is defined as the asymptotic 

Hence, the jet contraction ratio is 

{A2 + B2 {a2 + b2 

Substituting equations (20) and (66) into this formula gives the jet Contraction ratio as a 
function of A and E o r  in view of figure 8 as a function of tan-'B/A and E .  

resul ts  are presented in figure 9. 
the separated jet discussed in reference 1, for positive values of the orifice angle small  
changes of E result  in large changes in the contraction ratio, the effect becoming more 
marked as the orifice angle is increased. 
values of the orifice angle. However, this effect is not nearly so marked as that of ref- 
erence 1. Figure 9 also shows that, as in the case of the separated jet, for a given ori- 
fice angle increasing E always results in an increase in the jet contraction ratio. T h i s  
increase is negligible, however, fo r  orifice angles less than -1. 6 radians. Figure 9 
shows that the jet contraction ratio is a maximum for an orifice angle of -1 .  2 radians 
and falls off markedly when the orifice angle is changed. 

stituting equations (19), (16), and (58) into equation (57) and using definitions (56) and the 

These 
It can be seen from figure 9 that, as in the case of 

The opposite conclusion holds for negative 

The parametric equations (with parameter q )  for the sl ip line are obtained by sub- 

I 

0- 
c .6 m, 
0 
c 

c 
c 0 0 

-3 

Value of 
E 

l 
-2 

-. OS\ 

I 1 I \ L A  2 3 
0 

I 
-1 
Orifice angle, tan-] BIA 

Fi(;ure 9. - Jet contraction ratio. 
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expression for O i ( ( )  discussed previously. The resulting expression determines the 
boundary of the jet. The shapes of the jet boundaries for various values of the param- 
eters E and B/A are shown in figures lO(a) t o  (i). Figure lO(a) corresponds to  a jet 
injected normal to  the mainstream B = 0. Figures 10(b) t o  (e) are for negative orifice 
angles (i. e., jet injected downstream) and figures lo(€) to  (i) are for positive orifice 
angles (i. e., jet injected upstream). The configurations shown in figures lO(g) to  (i) 
may be strongly modified by viscous effects. 
case of the separated jet discussed in reference 1, when the orifice angle is greater than 
or equal to  ze ro  a small  change in the total p re s su re  within the jet results in a fairly 
large change in both the jet penetration and jet thickness. This effect becomes more 
pronounced as the orifice angle is increased. However, the effect is not as marked as 
in the case of a separated jet. The figures also show that turning the jet into the main 
s t ream tends tc markedly decrease the flow in the jet, The extreme sensitivity of the 
flow configuration to E at large positive orifice angles indicates that the perturbation 
analysis will break down when the orifice angle is large enough. 

The pressure coefficient on the slip line is obtained as a function of the distance 
along the slip line in parametric form from equations (61) and (65) after using definitions 
(521, (54), (569, and (58). The results of these calculations are shown in figures ll(a) 
t o  (h). Each figure is dmwn for a different orifice angle. These curves contain all the 
information necessary for calculating the viscous boundary layer along the sl ip line. 
The curves show that for a fixed orifice angle the velocity at both the upstream edge of 
the orifice and at the downstream end of the sl ip line increases with increasing E. 

negative orifice angles the velocity tends to  be relatively constant along the slip line, ex- 
hibiting a slight dip at the upstream edge of the orifice. A s  the orifice angle is increased 
toward zero the variation of velocity along the slip l-he becomes more pronounced. 
nonnegative values of the orifice angle there is a definite peak in the velocity profiles 
which beconies more marked as the orifice angle is increased. This peak is attributed 
to the fact that the velocity is infinite at the downstream edge of the orifice. Since this 
point moves closer to  the slip line as the orifice angle is increased, the velocity along 
the slip line becomes more peaked as the orifice angle increases. 
the velocities (pressure coefficients) on the slip lines of the attached and separated jets 
is illustrated in figure 12 for zero orifice angle. The pressure coefficient of the sepa- 
rated jet rises monotonically to l far downstream. This smoother behavior can be at- 
tributed to  the presence of the wake which adjusts in shape to keep the velocity of the 
turning jet f rom getting too large and the pressure from dropping too far below the static 
pressure of the stream. If the downstream wall is actually very thin, viscous effects 
will very likely cause the formation of a separation bubble at the lip. In that event, the 
velocity distribution on the slip line will'fall between the two extremes shown in the fig- 
ure. 

Figures lO(a) and (f) show that, as in the 

For 

For 

The contrast between 
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1. l o r  

Value of  
E 

0.2 7, 

. 1 y.', 

0 
I 
> . 

(a) Ori f ice angle, tan-1  B / R  = 0. 

-1. -.401 uo I 7"1 I c r  I I I t , I I I I I r I i I I I TJ I I I I I I I t I I I I I I I I I I I I 1 I I I I I I I I , I I I I I r 
I 1 I I I I 

(b) Or i f i ce  angle, tan'' B/k = - 2 d 3 .  Abso!uie va lue  of  epsilon, I E 15 0.4. 

-. -f 40 

Dimensionless coordinate, XlHo 

( ~ l )  Or i f i ce  angle, t a n - 1  B ~ A  = ~ / 3 .  

Figure  10. - Jet c o n t o u r s  for  vary ing  o r i f i c e  angles a n d  vary ing  values o f  e .  
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(e) Or i f i ce  angle, t a n - l  B I 4  = -7d6. 

0. 2 7 ,  
.17'\ 
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I It. 

\ \  

0 7, '\ \\ 
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I I I I I 
(f) Or i f i ce  angle, tan- '  BIA = 7rI6. 

0.05 T, 

-.OS\, '\ 

0 -, '\\ 

___ \ '\ '\ 

( g )  Or i f i ce  angle, t a n - 1  BIA = n/3. 

I I I I I I I 
( h )  Or i f i ce  angle, tan-' BIA = d 2 ;  E = 0. 

~~ . . . . . . , . , , , , . . . . . -, . , -. 

--. 10 

1. 10 

-. 10 1 I 1 
-2.00 -1.40 -.SO -. 20 .40 1.00 1.60 2.20 2.80 3.40 4.00 

Dimensionless coordinate, XIHO 

( i )  Or i f i ce  angle, tan- '  BIA = 2 d 3 ;  E = 0. 

F igure  10. - Concluded. 
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.201 I 
0 1.06 
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5.33 

I 
4.26 

Distance along slip line, S / H ~  
(c) Orif ice angle, tan-1 BIA = -r/3. 

Figure 11. - Pressure coefficients on slip l ines of jets for varying orif ice angles and varying values of E .  
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(e) Orifice angle, tan-1 BIA = 0. 
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Figure 11. -Continued. 
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Figure 11. - Concluded. 
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I 
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~~ I 
10 

I 
8 

I 
6 

I 
2 4 

Distance along jet boundary, 5lH 

Figure 12. - Pressure coefficients o f  attached and separated jets. 
Orifice angle, tan-1 BIA = 0; E = 0. 

CONCLUDING REMARKS 

A procedure developed in reference 1 has been applied to obtain a solution to the 
problem of a two-dimensional inviscid jet injected from an orifice at an oblique angle to  
a moving s t r eam for the case where the jet does not separate from the downstream edge 
of the orifice. The analysis shows a peaking of the pressure coefficient along the slip 
line which increases as the orifice is tilted into the s t ream. 
s t ream also makes the jet contraction ratio more sensitive to  changes in total pressure 
in the jet. 

Tilting the jet into the 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 12, 1969, 
129-01. 
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